
HARMONY H2020 PROJECT | 2023

HARMONY
Model Suite
Manual
Detailed instruction manual for the running of various simulations

This project has received funding from the
European Union’s Horizon 2020 Research

and Innovation Programme under grant
agreement Nº815269. HARMONY is a
project under the CIVITAS Initiative, an EU-
funded programme working to make

sustainable and smart mobility a reality for
all.

Index

1. Terminology and Overview……………………………………………………3

2. Walkthrough of Main Functionalities……………………………………4
A. Include a Modelling Component in the MSB) …………………7

B. Build a Modelling Template……………………………………………10
C. Use input files and templates to create a Project…………14
D. Run scenarios…………………………………………………………………17

E. Compare different Scenarios in the HARMONY MS
Dashboard…………………………………………………………………………..19

3. Extending the MS…………………………………………………………………23
A. Tasks of Component Developer…………………………………….23

B. Tasks of MS Maintainer………………………………………………….26

4. Installation and initial configuration of the MS………………….31

 A. System requirements……………………………………………………..31

 B. Installation………………………………………………………………………31
 C. Running the server…………………………………………………………32

 D. Dunning the database…………………………………………………….32
 E. Running the client app……………………………………………………32
 F. Creating first user……………………………………………………………33

3

HARMONY Model Suite Manual

This is the Online Manual of the HARMONY Model Suite (MS for

short). It explains the main concepts of the platform and how an end

user can use the platform. It also includes an Appendix that

describes (i) how the platform can be extended with new

components and (ii) how one can install the platform and create new

users (useful for the maintainers of the platform).

1. Terminology and Overview

The MS targets two end users - Transport Modelers (Modelers

for short) and Transport Planners (Planners for short). It also

assumes two supporting roles, that of Component Developers

(Developers for short) and of platform Maintainers.

There are five important concepts in the MS:

1. Modeling Components

2. Modeling Templates

3. Projects

4. Scenarios

5. Dashboard

The building blocks of the HARMONY MS are the Modelling

Components, i.e. the stand- alone models created by the

developers. Selecting one modelling component or

combining two or more, the modellers can create a Template

i.e., a modelling application composed by one or more stand-

alone models. Once the template is created, a specific Project

can be defined by uploading the required input files.

In this phase, also the Planner can use the HARMONY MS to

create projects and scenarios. By default, the first set of

input files is used automatically by the platform to create the

Default Scenario.

4

Within the same project, it is possible to create different

scenarios by uploading different input files or defining

different parameters. Finally, it is possible to navigate among the

project KPIs, to analyse the impacts and compare the results of

two or

more scenarios through the HARMONY MS Dashboard.

In the figure below, a graphical representation of the HARMONY

MS structure is shown.

Fig.1 - HARMONY MS Structure

A more detailed definition of the above roles and main concepts is
available in the MS Glossary.

2. Walkthrough of Main Functionalities

A walkthrough of the main functionalities (and corresponding

screens) of the MS is described in the sections below. If you

want to try out the examples, the mentioned files can be found

https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Glossary

5

here.

The first step as an end user (Modeler or Planner) is to login to

the platform (Fig. 2). For this, the user needs to navigate to the

URL of the platform and use the username and password

provided to them by the platform maintainers. The User Type

option needs to be "User" (preselected) and not "Admin".

Fig.2 - MS login page

When a user successfully logs in to the platform, they see the MS

home page (Fig. 3). This includes shortcuts to the four main

screens of the MS: Modeling Components, Modeling Templates,

Projects, Scenarios. They can be accessed by clicking on the

corresponding name or small figure above the name. Clicking

on the "Run Scenario" or "View Scenarios" button brings the user

to the Scenarios page.

https://www.dropbox.com/sh/2rzhf3k5w4k3qbl/AACkATR1sHTtm0RRW21rKpE9a?dl=0

6

Fig.3 - MS home page

For instance, if the user clicks on the "Modeling Components" in the

home page, they are redirected to the corresponding page, which

will look like the one of Fig. 4. Note that depending on the

components that are so far created or uploaded, different

components would appear in the list. However, each of the main

screens (Modeling Components, Modeling Templates, Projects,

Scenarios) has the following in common:

1. The logo of the MS appears at the top left of the screen - [1] in
Fig. 4.

2. The active screen is highlighted in blue background in the left
side-menu - [2].

3. The name of the logged-in user appears at the bottom left - [3].

4. Links to the MS Glossary and MS Online Manual appear
directly below the user name at the bottom left - [4].

5. Copyright information appears at the bottom of the screen -
[5].

6. Links to the MS About page and its Terms and Conditions
page appear at the bottom right, along with a log out button
- [6]. Clicking on the log out button terminates the current

user session and brings the user to the MS login screen.

https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Glossary
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual

7

Fig. 4 - Example of a Modeling Components page

The following sections A, B, C, D, and E explain in turn the main

functionalities of the MS, which are:

A. Include modeling components (done by Modelers)

B. Create modeling templates (done by Modelers)

C. Create projects (done by Modelers and Planners)

D. Run scenarios (done by Modelers and Planners)

E. View and compare scenario results (done by Modelers

and Planners using the MS Dashboard)

A. Include a Modelling Component in the MS

A Modelling Component is a stand-alone model, developed

exogenously with respect to the HARMONY MS and requiring a

set of inputs in order to run and produce outputs indicators.

To include a Modelling Component in the MS, one has to upload

it and specify which are the inputs and which are the outputs

files.

https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual#A-Include-a-Modelling-Component-in-the-MS
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual#B-Build-a-Modelling-Template
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual#C-Use-input-files-and-templates-to-create-a-Project
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual#D-Run-scenarios
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Online-manual#E-Compare-different-Scenarios-in-the-HARMONY-MS-Dashboard

8

Fig.5 - Modelling Components Upload and Create options

There are two ways to do it:

• Using a specification file. The HARMONY MS is able to

upload the Modelling Components specifications reading

from a json file. The developers have already created the

specification files for the models developed in the

HARMONY project. Therefore, moving to the tab

Components of the HARMONY MS, one can click on the

button Upload Component and select the related json file.

It is a common practice to name these files as

modelname_components.json.

• Manually specifying inputs and outputs files. In the

tab Components, one can choose to use the button

Create Component. This button leads to the Create

Component page, in which it is possible to add name,

description and model ID of the Modelling Component that

is under creation. The user also needs to specify the inputs

and outputs files of the Modelling Component.

9

Fig.6 - Fields to be filled in when creating the component

In both cases, in the Components tab, beside the component

name, it is possible to view the component' description page by

clicking on the button view. The aim of the component page is to

show the component structure in terms of input and output,

both as a list of files and in a schematic visual representation.

10

Fig.7 - Visual representation of a Modelling Component (Inputs highlighted

in red, Outputs highlighted in green)

B. Build a Modelling Template

Fig.8 - Template created as combination of one or more Modelling

11

Components

Once one or more Modelling Components are available in the

MS, it is possible to combine them to create a Modelling

Template. In case of a single component, the template is

simply replicating its structure. Otherwise, the aim of this

process is to specify the linkages between two or more

modelling components, e.g. the Demographic Forecasting

Model feeding the Regional Economy Model with the variable

Total Population by Year which is calculated in a specific

output file and read in a specific input file.

Fig.9 - Templates Upload and Create options

There are two ways to do it:

Using a specification file. The HARMONY MS is able to upload

the Template specifications reading from a json file. The

developers have already created the specification files for a list of
templates implemented in the HARMONY project, in order to

avoid errors and to speed up the procedure. Thus, moving to the
tab Templates and clicking on the button Upload Template,

one can select
the json file of the related template and upload it in the

HARMONY MS.

Manually specifying the structure of the template. By

clicking on the button Create Template, one can manually

add the Modelling Component(s) to use and specify the linkages

between each other through the input and output variables (and

files). First of all, it is required to specify the name of the

Template, the description and the Template ID. Then, one can

specify the Modelling Component(s) to be included in the

Template: it could be a single Modelling Component or two or

more. This is defined by specifying the number of tasks and

using the add(+) button to include the related Modelling

12

components. As an example, if we consider a Template with

the DFM (Demographic Forecasting Model) that feeds the REM

(Regional Economy Model), the following steps are needed:

click on the add(+) button to specify the order of the Modelling

components: i.e., Task 1 is the DFM model (by selecting from the

menu) and the next step is represented by Task (Modelling

component) 2.

click again on the add(+) button, to specify that Task 2 is the

REM model (by selecting from the menu)

within the same window, add a generated input, by clicking

on the button add(+) beside the label generated input

to specify which is the feeder Modelling Component, i.e. the

generator task (task 1, which is the DFM in this example) from the

menu

to specify the name of the output variable of the first modelling

component (PopYearTot)

to specify the name of the input variable (receiving input) for the

current modelling component, which is the Total Population
by Year in this example (as defined in the REM)

to specify that the DFM is the feeder model.

Fig.10 - Creating a Template using the "Create Template function"

13

Fig.11 - Adding Generated Inputs to a Modelling Component fed by

another one

In both cases, in the Templates tab, beside the template name,

it is possible to click on view to check the template structure,

i.e., the Modelling components included, with their inputs,

outputs and linkages, and see the visual representation of the

Template.

With respect to the latest, in addition to the visual

representation of the single modelling component, also the

linkages between the models used for the Template are

represented with purple arrow(s).

14

Fig.12 - Visual representation of a Template, with the Modelling

Components and their linkages

C. Use input files and templates to create a Project

Fig.13 - Select a Template to create a Project with it

Once the modelling template has been created, it can be used to

upload the input files representing the metropolitan area of

interest and initialize the related Project. By uploading input files

related to a specific context, the Modelling Components and the

Templates are applied to the case studies within the Project. With

this step, not only developers and modellers can use the HARMONY

MS, but also planners can play with it.

15

Fig.14 - From a Template, different Projects can be created

To create a Project, one can navigate to the Projects tab,

choose the Template to use, and click on Create Project. In the

Create Project tab, it is possible to move from a modelling

component to another one, uploading the required input files.

The inputs needed are listed under the label File key and

description: if an input is generated by another modelling

component, it is excluded from the list on the right, and

included in the list of the Generated Inputs.

Fig.15 - Creating a Project

16

The HARMONY MS can automatically recognize the input

files, if the names are matching those described in the

component specifications. Otherwise, one can simply click on

the input file not recognized and select manually the

corresponding input file of the modelling component in the

related folder. Once all the input files of all the modelling

components of the template are correctly uploaded, one can

click on Create button, and come back to the Project tab. For

each project, a default scenario is automatically generated.

Fig.16 - Uploading files when creating the Projects.

17

D. Run scenarios

i) Run the default scenario

Moving to the tab Scenarios of the HARMONY MS, the default

scenario automatically generated with the creation of the

Project is available. Here, by clicking on Start, the HARMONY

MS will run the modelling project with the features and input

files already specified for the related context. A percentage

diagram is real-time updated, to show the progress of the model

run. Once 100% is reached, it is possible to click on View and

access to the HARMONY MS Dashboard to explore the results.

TIP: the clone functionality

Since the procedure described above it is time-consuming in case

of many input files, it is possible to re-use some steps of the work

already done.

For example, if one would like to create a template slightly

different from another one already existing in the HARMONY MS,

it is possible to navigate the tab Templates, choose the template

to clone and click on Clone. This will lead to another template

creation page, with all the features of the previous template, but

editable.

In the same way, it is possible to create different projects, cloning

an already existing project, and changing only a few input files.

18

Fig.17 - Scenarios created and run for the Project specified in the top

right corner. On the right the options for each scenario

ii) Create different Scenarios

One of the main goals of the HARMONY MS is to compare

different scenarios, through an easy and customizable

dashboard. Thus, with the same Modelling Components,

Template and Project, one can simulate different scenarios by

navigating to the Project tab and clicking on the Add

Scenario button. Following the same procedure described

above for uploading the input files, an additional scenario will

be created and made visible in the Scenarios tab. By clicking

on Start, it is possible to run the scenario in the HARMONY MS

and check the progress until 100% is reached.

19

Fig.18 - Different Scenarios can be created for the same Project.

E. Compare different Scenarios in the HARMONY MS
Dashboard

Once at least a Scenario has been run, it is possible to click on

Results and open the HARMONY MS Dashboard. Here, on the

left on top the Project to which the scenario belongs is specified.

Below, the list of all scenarios belonging to this project (created

and run), is shown. By clicking on a scenario, it is possible to

visualize its results, through the selected project KPIs. The list of

KPIs is available from a menu at the top of the page: it is possible

to add a KPI to the dashboard by choosing it and clicking on the

button ADD KPI.

20

Fig.19 - Selecting a KPI in the HARMONY MS Dashboard.

Once a KPI is added, using the buttons at the bottom of the KPI

(Fig. 20), it is possible to (going through the buttons from left to

right):

1. delete it.

2. enlarge it (its width is set to the width of the dashboard - see

Fig. 21).

3. shrink it (its width is set to one third of the width of the
dashboard, so that three small sized KPIs can be shown next

to each other - see Fig. 20).

4. download its data (in CSV format).

5. select it (for a batch action - so far deletion is supported).

Several KPIs can be deleted by first selecting them and then

clicking on the red DELETE button (next to the ADD KPI button at

the top).

21

Fig.20 - Three KPIs in a row of the dashboard.

Fig.21 - KPI 1 is enlarged (compare to Fig. 20).

In addition, the following functionality is available by clicking

at the Configuration button at the top:

• by expanding the Configuration menu, it is possible to see

the visual representation of the Template, with all the

inputs, outputs, and linkages (in case of more than one

modelling component).

22

• by clicking on each input / output, it is possible to see how

it is structured, or directly download it. To do it, one should

click on the symbol to download or view it.

Fig.22 - View or download input and output files in the HARMONY

MS Dashboard.

When more than one scenario is simulated, it is possible to

compare them through the HARMONY MS Dashboard. By

clicking on the name of the Project on the left side, on top of the

page it is possible to choose:

• from the first menu the Scenarios to be compared

• from the second menu the KPI to be used for comparison,

clicking on the button ADD KPI as explained above

23

Fig.23 - Comparing a KPI for different scenarios in the HARMONY MS

Dashboard.

3. Extending the MS

The MS can be extended by developing and integrating new

modeling components. Such components can be written in

any programming language as long as they communicate via

Kafka and are deployed using Docker. The integration of a

modelling component to the HMS is rather complex process in

which both Component Developers and MS Maintainers are

involved. We describe each role’s tasks in turn.

A. Tasks of Component Developer

The first task of the Component Developer is to provide the
specification of the modelling component. This comprises:

1. The name of the component.

24

2. A short description of its functionality.

3. Its ID used to uniquely identify the component in the code
of the platform.

4. A description of its inputs – the parameters that need to
be set so that the modelling component can be executed.

5. A description of its outputs – the files that are
generated once a component is executed.

The above are provided in a single, JSON-formatted file, called
“component specification”. An example of such file can be found

here.

When preparing such a specification, one needs to consider the

following:

• The name of the component (line 2) is the name that will

be shown in the user interface of the platform (e.g., in the

overview of components of the “Modelling Components”

page)

• The description of the component (line 3) is the description

that will be shown in the user interface of the platform (e.g., in

the overview of components of the “Modelling Components”

page)

• The modelId of the component (line 4) is the ID of this

modelling component. This is not shown at the user interface of

the platform but is important for uniquely identifying

components and Kafka topics as will be described later.

• The specification of each input and output needs to include the

keys fieldType, key, label, and description.

• The label is the name of the parameter what will be shown in

the user interface of the MS.

• The description will be shown in the user interface of the MS as

well (currently this is shown when a user puts the mouse over

the name of a parameter in the “Create Project” and “Create

Scenario” pages).

• The key is used for uniquely identifying the parameter in the

code of the platform.

https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/blob/main/demo_component.json

25

• The fieldType of an input can be textbox, dropdown, or file.

Textbox corresponds to an input that is a value (a string or a

number), dropdown corresponds to a choice between predefined

options, and file corresponds to a file that needs to be provided

as input.

In case of textbox, then

a scalarType needs to be specified which can be string, int or

float.
a value needs to be specified which will be shown in the user

interface of the MS as the default value for this parameter.

In case of dropdown, then

a dictionary with name options needs to be specified, to

provide the options to choose from. Each option is specified by a

key (what is shown in the user interface of the MS) and value

(the representation of the option in the code of the platform).

a value needs to be specified which will determine the default

(initial) option when this dropdown is shown in the user

interface.

In case of file, no additional information needs to be provided.

The fieldType of an output can only be file.
The values of all keys need to follow the mixedCase naming style:

initial lowercase character, capital initial letter for any other word.

The next step of the Component Developer is to provide the

source code of the modelling component. Within HARMONY, a

private Github repository has been used to collect the source

code of the different modelling components from the different

HARMONY partners. A partner contributing a modelling

Note

Such a JSON-formatted specification file can be uploaded directly

by the user interface of the MS to create a new modelling

component that modelers can use to create Modelling Templates.

26

component needs to create a new branch off the master

branch of the repository, commit and push their code there, and

notify the HMS maintainers, i.e., the team from MOBY

responsible for the development and maintenance of the

platform during the project. The source code of a modelling

component needs to satisfy two important requirements:

1. Wherever the code reads an input file or write to an output

file, the file paths are read by the runtime structure (e.g., in
Python, this is a dictionary). This is a prerequisite for the

following integration steps, where MS maintainers modify
the source code so that this runtime structure is updated
with the paths to the input and output files managed by

the platform (and communicated to the modeling
component via Kafka messages, as explained later).

2. All the dependencies (e.g., external libraries, modules)
need to be resolved at runtime, so that the MS maintainers
can successfully run the code. The way the code is run, as

well as any steps to be done before running the code (e.g.,
downloading libraries, setting up local environment), need

to be documented in a file called README.md that is
shipped with the code. The preferred way of packaging
the code so that the dependencies can always be

resolved is for Component Developers to provide a
Docker container image.

B. Tasks of MS Mainteiner

Given a new modelling component that needs to be integrated

to the platform, the MS Maintainer (a role that during the

Note

An MS modelling component can be written in any programming

language. However, most of the modelling components (more

than 90%) are written in Python. To simplify and speedup the

development in such a case, we have provided a template project

in a private Github repository that a Component Developer can

use as a starting point for structuring their components,

27

HARMONY project is undertaken by Moby) has the following

tasks:

1. Create the specification of the Kafka messages that will

be exchanged between the platform and the modelling

component.

2. Ensure that the code of the modelling component (i) can

receive the relevant Kafka messages, (ii) is packaged as a

Docker container.

3. Copy the code of the modelling components to the code
base of the MS.

4. Perform the necessary changes in the code base of the

MS for the integration to be successful.

The first task of the MS Maintainer is to create the specification

of the Kafka messages that will be exchanged between the

platform and the modelling component. The communication

between the workflow engine of the platform backend and

each modelling component is done via Kafka. Two types of

messages exist in this interaction:

1. start messages that are sent by the workflow to the

modelling components. Once a modelling component
receives such a message, it must start its execution.

These messages are sent to a Kafka topic named after
the ID of the modelling component (to which the code of
the component subscribes to).

2. progress_and_output messages that are sent by the

modelling components to the workflow. These contain a
number representing the completion percentage of the

execution of the component and, optionally, a dictionary of
generated outputs. When a message with completion

percentage of 100 is received by the workflow, the workflow
assumes that the execution of that component is
completed. These messages are sent to a Kafka topic with

name <component_id> + “_progress_output”.

As an example, we can take the start message specification for

the TFS component. The specification is written in a language

called Protocol Buffers. At runtime, the Schema Registry

of the HMS checks whether the messages exchanged in a Kafka

topic conform to its specification. If they do not (e.g., an input is

missing, or an input is in the wrong format), then an error is

thrown. This helps the troubleshooting in the platform since

https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/tfs/start_tfs.proto
https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/tfs/start_tfs.proto

28

communication errors can be seen and resolved early.

Hence, the first task of the HMS Maintainer is effectively to map

the JSON-based specification to the Protocol Buffers-based

specification of start message for this component. In this

mapping, it is important to note that:

• The name of an input or output in the Protocol Buffers-

based specification corresponds to the key of the

corresponding input of output in the JSON-based

specification.

• Inputs with fieldType textbox and scalarType string are

mapped to string inputs.

• Inputs with fieldType textbox and scalarType int are

mapped to int32 inputs.

• Inputs with fieldType textbox and scalarType float are

mapped to float inputs.

• Inputs with fieldType dropdown are mapped to string
inputs.

• Inputs and outputs with fieldType file are mapped to

string inputs.

29

We note also here that the specification of progress_and_output
messages is shared among all modelling components – hence no

action is needed on this end by the HMS Maintainers. Such

specification can be found here.

Such a message can contain one or more (repeated keyword)

generated outputs. An output is comprised by a key (which needs

to match one of the keys of the outputs in the start message) and

a value, which is the path to the file that was generated by the

modelling component.

Once the Protocol Buffer specification of the start message of

the modelling components is created, the MS Maintainer needs

to add it under the protos folder of a publicly available Github

project called harmony-interface. The next time the platform

will be built, it will then include the newly created specification.

The second task of the HMS Maintainer is to ensure

that the code of the modelling component:

1. Can receive start Kafka messages and send

progress_and_output Kafka messages. The code needs

to be adapted to start the execution of the modelling
component upon receiving a start message, and to send
several progress_and_output messages at different points

When it comes to a file input or output, only its path is sent over

Kaftka (as a string), not the actual file. This is an important decision

taken in MS: files are not sent “over the wire” from the platform

backend to the modelling components or vice versa. Instead, both

the platform backend to the modelling components have access

to a common file system (which is implemented as a Docker

Volume in the current version of the platform) and are able to

write to it and read from it. This decision reduces the amount of

data that needed to be communicated between components –

since it is much easier and faster to send the path of a file than the

actual file (that can be of several MBs). On the downside, this

decision means that the modelling components and the platform

backend need to be either be deployed on the same machine (our

current setup on AWS) or have access to the same network drive.

https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/common/progress_outputs.proto
https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/common/progress_outputs.proto

30

in its execution. This step is specialized and clearly
depends on the implementation language used for the

development of the modelling component. We have
documented the necessary steps in full detail for the most

common case – that of Python – in a separate Wiki page
focusing on the Integration process.

2. Is packaged as a Docker container. This might already be

the case for certain provided components in which case no
further action is needed. If a modelling component will not

be run as a Docker container (contrary to this preferred
option), then the necessary setup scripts (depending on

the operating system where the platform is deployed)
need to be prepared.

The next tasks of the HMS Maintainer are summarized below:

1. Update docker-compose.yml to add a new service with

the name of the new component. This is only needed in

the (preferred) case where the modelling component is
packaged as a Docker container. Docker-compose is a
utility used by the platform to handle the lifecycle of all the

Docker containers in the platform, i.e., to start and stop
their execution. When a docker container of a modelling

component starts, it should simply wait for start messages

in its Kafka topic.

2. Make the following changes to the source code of the

harmony-interface project so that the new modelling

component is correctly recognized by the platform, in
particular:

Update the check_for_start_messages method in

kafka_message_receiver.py to include the

ProtobufDeserializer corresponding to the proto file of the new

component.

Add a new method send_start_X in kafka_message_sender.py
where X is the ID of the new modelling component.

3. Make two following changes to the source code

of the platform’s backend: In file

manager/scenario_runner.py:

Add a new KafkaMessageSender for this component at the

beginning of the file.

Update the method start_scenario to be able to start the

component when requested by the users in the platform’s user

https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Integration%20Process
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Integration%20Process

31

interface.

In file manager/kafka_admin.py, add the new topic name to the

list of topics that are created upon startup of the server.

4. Build the server without cache (to reload the

interfaces). This can be done, e.g., by issuing sudo
docker build --no-cache server.

4. Installation and initial configuration of the MS

A. System requirements

Make sure following software/tools are installed in the target
machine:

1. Python 3.6

2. Docker-compose

3. Kafka-Zookeeper

4. Mongodb

5. Makefile

6. Node (version 12), npm, nvm

B. Installation

1. Please clone the Harmony platform from the following

Link: https://github.com/MobyX-

HARMONY/harmony_interface/blob/main/harmony_interface/protos/co
mmon/progress_outputs.proto

2. To use the platform please open the terminal, go to
HARMONY-Platform/src

3. To start the platform issue: make build and then make
start

4. To stop the platform issue make down

5. To see the logs, please open the browser, go to the following

As already mentioned, this integration process is also described
in this separate Wiki page.

https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/common/progress_outputs.proto
https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/common/progress_outputs.proto
https://github.com/MobyX-HARMONY/harmony_interface/blob/main/harmony_interface/protos/common/progress_outputs.proto
https://github.com/MobyX-HARMONY/HARMONY-Platform-Documentation/wiki/Integration%20Process

32

link http://localhost/9999and you should be able see all the

containers and logs.

C. Running the server

To run the server, please make sure you have the correct

credential file in json format. Open the terminal and please go

inside server directory (cd HARMONY- Platform/src/server).

Put the credentials.json file inside the server directory. Server

will read this file,load the required configuration and should run

properly.

D. Running the Database

Since the MS database is password protected, it requires

creating a database user upfront to run it properly. To run the

database properly, please make sure you have the following file

and put them inside the directory HARMONY-Platform/src. The

files are:

1. mongo-init.sh
2. Init_harmony_mongodb.js

Inside the src directory please run the command ./mongo-
init.sh. This should run our database properly.

E. Running the client app

To run the client app please go inside the client app directory and

run the following commands

Please, open the browser and go to the link

http://localhost:4200/login. If everything goes alright, the

below screen should appear and that ensures the app successfully
installed.

 cd HARMONY-Platform/src/client-app
 npm install
 ng serve

http://localhost/9999

33

F. Creating first user

The platform allows us to create a user to use the platform. To

create a user, please log in as Admin. The login credentials can

be found inside the credentials.json file.

A successful login as Admin will represent the following screen.

Click the add user button which will show a user registration

pop. Please fill up relevant information to create the user.

Fig.24 - Creating a new user

34

This project has received funding from the European

Union’s Horizon 2020 Research and Innovation Programme

under grant agreement Nº815269. HARMONY is a project

under the CIVITAS Initiative, an EU-funded programme

working to make sustainable and smart mobility a reality

for all. Read more – civitas.eu.

Website

https://harmony-h2020.eu/

Email

info@harmony-h2020.com

Linkedin

Twitter

Youtube

mailto:info@harmony-h2020.com
https://www.linkedin.com/company/harmony-h2020/
https://twitter.com/Harmony_H2020
https://www.youtube.com/channel/UCi_JjN2qBy52x1Nb2NnyLEg

